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The aim of the present paper is to propose a simple method to investigate the
vibratory behaviour of laminated composite structures subjected to large thermal
loads (may be beyond critical temperature Tcr ). von Karman type non-linear
strain–displacement relationships are employed to derive non-linear finite element
equations of motion. These finite element equations are based on secant stiffness
rather than tangential stiffness. The secant stiffness matrix is separated into three
parts, i.e., (i) linear stiffness matrix independent of field variables, (ii) non-linear
stiffness matrix depending linearly on field variables and (iii) non-linear matrix
depending quadratically on field variables. Linear thermal buckling and free
vibration analyses are performed as a first step to compute the critical
temperatures, natural frequency and corresponding mode shapes. Assuming the
mode shape corresponding to fundamental frequency as the spatial distribution,
large-order non-linear finite element equations are reduced to a single
second-order ordinary non-linear differential equation. A direct numerical
integration method is employed to compute the non-linear frequencies of
thermally stressed structures. To demonstrate the method, vibratory behaviour of
thermally stressed laminated beams is investigated. The proposed method is
validated by comparing the non-linear frequencies of beams (not subjected to
initial stress) obtained using the present method with those available in the
literature. The influence of difference in buckling mode shape and vibration mode
shape for certain boundary conditions on the non-linear behaviour is also studied.
Some interesting observations regarding the finiteness of amplitude in the
post-buckling regime are also made.
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1. INTRODUCTION

The influence of thermal environment on aircraft/aerospace structures was realised
much earlier (probably during World War II) with the advent of supersonic flights.
Kinetic heating during supersonic flight results in temperature increase which in
turn influences structural behaviour. This increase in temperature with restrained
thermal expansion induces compressive stresses which could cause thermal
buckling and alter natural frequencies significantly. In the last decade or so, the
use of fibre-reinforced composites in the aerospace industry has increased
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significantly owing to their high specific strength and stiffness. This property and
flexibility of tailoring the fibre orientation leads to low design thicknesses and thus
make the structures more succeptable to buckling. But, thin composite structures
are capable of carrying much larger loads beyond buckling loads without failure
provided buckling stress is within the elastic range. Further, transverse shear
flexibility is likely to play a significant role due to their low ratios of transverse
shear moduli to in-plane modulus. Therefore, it is essential to understand the
post-buckling behaviour and vibration characteristics of buckled composite
structures, viz., beams, plates and shells when subjected to thermal loads.

The composite structures of high Mach number aerospace vehicles
(re-entry/reusable) should be able to endure large thermal loads and still preserve
their structural integrity. Therefore, thermal effects must be considered during the
design of these structural elements. An excellent review article by Tauchert [1]
provided an historical perspective of thermally induced flexure, buckling and
vibration of plates. The problem of thermal buckling and post-buckling of
laminated beams and plates has been investigated in references [2, 3]. Similarly,
non-linear oscillatory behaviour of laminated beams and plates has been studied
by several investigators [4–6].

The vibration behaviour of buckled isotropic plates has been investigated by
Bisplinghoff and Pian [7]. They employed an extension of Marguerre’s theory for
plates subjected to longitudinal compression and obtained stress function. The
modal equations of motion were derived from Lagrange’s equation with the strain
energy and kinetic energy of the buckled plate. Yang and Han [8] also investigated
the Bisplinghoff and Pian’s [7] plate problem using finite element method. They
solved the problem in three steps, viz., (i) a simple relation was derived between
uniform temperature change DT and in-plane compression P in the buckled region,
0·5(DT/DTcr +1)=P/Pcr , (ii) the post buckling state under P/Pcr was determined,
and finally (iii) linear vibration about this state was obtained.

Zhou et al. [9] and Lee and Lee [10] investigated the vibrations of thermally
buckled thin and thick composite plates by employing finite element method. In
these studies, the authors determined the post-buckled state and then by using this
tangent stiffness matrix corresponding to this state, frequencies are computed.

It is surprising to note that literature on vibrations of thermally buckled
laminated beams is relatively scarce, thus becomes the subject of the present paper.
In this study, a simple computational scheme is proposed to investigate the
oscillatory behaviour of unsymmetrically laminated beams/plates subjected to
large thermal loads.

2. THEORETICAL FORMULATION

In this section, von Karman non-linear plate theory, which is a subset of general
non-linear theory of elasticity, is employed for the problem formulation. The
derivation assumes large displacements, but the rotations and strains are assumed
small compared to unity. It implies that the changes in the geometry in the
definition of stresses and integration are neglected. Further, use is made of
Mindlin’s assumptions, i.e., planes normal to the undeformed middle surface
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remain plate but not necessarily normal. Under these assumptions the
strain–displacement relationship can be written as:

oxx = u,x + 1
2w

2
,x + zCx,x − axDT

oyy = v,y + 1
2w

2
,y + zCy,y − ayDT

gxy = u,y + v,x +w,xw,y + z(Cx,y +Cy,x )− axyDT

gxz =Cx +w,x

gyz =Cy +w,y (1)

where the transverse normal strain (ozz ) is neglected and cartesian coordinates are
used; with x–y being the plate mid-plane, u and v are the displacements of the
mid-plane in the x–y direction, w is the transverse displacement in the z-direction
and Cx and Cy are bending rotations in the x–z and y–z planes respectively. ax ,
ay and axy are the coefficients of thermal expansion and DT represents temperature
difference. The stress–strain relations are given by

sxx Q� 11 Q� 12 Q� 16 0 0 oxx

syy Q� 12 Q� 22 Q� 26 0 0 oyy

txy = Q� 16 Q� 26 Q� 66 0 0 gxy (2)g
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txz 0 0 0 Q� 44 Q� 45 gxz

tyz 0 0 0 Q� 45 Q� 55 gyz

where Q� 11, Q� 12, Q� 16, Q� 22, Q� 26, Q� 66, Q� 44, Q� 45 and Q� 55 are reduced stiffnesses and are
obtained by transforming the material properties from the principal material
coordinate system to the plate coordinate system (x–y). The strain energy of the
plate made up of linear elastic material reads

U=
1
2 gv

(sxxoxx + syyoyy + txygxy + txzgxz + tyzgyz ) dx dy dz (3)

where the quantities subjected to variation are the displacements (u, v and w) and
rotations (Cx and Cy ) after substituting equations (1) and (2) into equation (3).
Now, defining the stress resultants as

Nx =g
h/2

−h/2

sxx dz; Ny =g
h/2

−h/2

syy dz; Nxy =g
h/2

−h/2

txy dz

Mx =g
h/2

−h/2

sxxz dz; My =g
h/2

−h/2

syyz dz; Mxy =g
h/2

−h/2

txyz dz

Qx =g
h/2

−h/2

txz dz; Qy =g
h/2

−h/2

tyz dz

where h is the plate thickness.
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The constitutive equations can be rewritten as:

Nx A11 A12 A16 B11 B12 B16 0 0 ox0

Ny A12 A22 A26 B12 B22 B26 0 0 oy0

Nxy A16 A26 A66 B16 B26 B66 0 0 gxy0

Mx B11 B12 B16 D11 D12 D16 0 0 kxg
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My
=

B12 B22 B26 D12 D22 D26 0 0 ky
(4)

Mxy B16 B26 B66 D16 D26 D66 0 0 kxy

Qx 0 0 0 0 0 0 A44 A45 gxz

Qy 0 0 0 0 0 0 A45 A55 gyz

where Aij , Bij and Dij (i, j=1, 2, 6) are usual extensional, bending–extension and
bending stiffness coefficients Aij (i, j=4, 5) are transverse shear stiffness
coefficients with

ox0 = u,x + 1
2 w2

,x − axDT; oy0 = v,y + 1
2 w2

,y − ayDT

gxy0 = u,y + v,x +w,xw,y − axyDT; kx =Cx,x; ky =Cy,y

kxy =Cx,y +Cy,x ; gxz =Cx +w,x and gyz =Cy +w,y .

If the in-plane inertia of the plate is neglected, the kinetic energy expression
reads:

T=
1
2 gv

r(z)[(zC� x)2 + (zC� y )2 + (ẇ)2] dx dy dz (5)

where r is the plate density and can vary from layer to layer, and ( · ) denotes
differentiation with respect to time.

Hamilton’s principle for the problem at hand can be written as,

g
t1

t0

d(T−U) dt=0 (6)

where the functional (3) and (5) are to be used in equation (6) and the quantities
subjected to variation are u, v, w, Cx and Cy . Applying the variational operation,
equation (6) will furnish three equations of motion in w, Cx and Cy , and two
equations of equilibrium in u and v together with the boundary conditions.

The governing equations of a laminated beam can be derived by using the same
procedure. While doing so, one can consider the fact that syy = txy =0 and express
oyy and gxy in terms of oxx . This information is used to modify the constitutive
equation (2) and strain energy expression (3). Similarly, in kinetic energy
expression C� y vanishes if the motion is in the x–z plane. The modified kinetic
potential (6) yields two equations of motion in w and Cx and one equilibrium
equation in u along with boundary conditions.
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3. FINITE ELEMENT FORMULATION

Let the domain of the structure be divided into sub-domains called finite
elements. The quantities that are subjected to variation, i.e., field variables u, v,
w, Cx and Cy are expressed in terms of nodal quantities as:

u= s
NN

i=1

Niui ; v= s
NN

i=1

Nivi ; w= s
NN

i=1

Niwi

Cx = s
NN

i=1

NiCxi ; Cy = s
NN

i=1

NiCyi (7)

where ui , vi , wi , Cxi and Cyi are nodal variables and NN is the number of nodes
in an element. Ni denotes shape functions. These shape functions can be the same
or different for each field variable. Substituting equation (7) in the
strain–displacement relation (1), the strains can be expressed in terms of nodal
quantities as:

{o}= {[BL ]+ 1
2[BNL ]}{d}− {oT} (8)

[BL ] and [BNL ] are matrices relating the linear and non-linear components of strain
vector to the nodal quantities {d}. {oT} denotes thermal strain vector. The strain
energy expression (3) after substituting constitutive relation (2) and strain–dis-
placement relation (8) becomes:

U(e) =
1
2 gv

{o}T[Q� ]{o} dx dy dz (9)

where e denotes element. Using equations (5) and (7), the kinetic energy expression
reads:

T(e) =
1
2 gv

r(z)[zC� T
xiNT

i NiC� xi + zC� T
yiNT

i NiC� yi + ẇT
i NT

i Niẇi ] dx dy dz. (10)

The variation of the kinetic potential (T–U) gives the following non-linear finite
element equation;

[K0 + n1(d)+ n2(d)]{d}+ l[KG ]{d}+[m]{d� }= {ft} (11)

where

K0 =gv

BT
LQ�BL dx dy dz

n1 =gv

(BT
NLQ�BL + 1

2 BT
LQ�BNL ) dx dy dz
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n2 =gv

1
2

BT
NLQ�BNL dx dy dz

and

{ft}=gv

[BL ]T[Q� ]T{oT} dx dy dz

[n1] and [n2] are first-order unsymmetric and second-order symmetric stiffness
matrices respectively. That is, [n1] depends linearly and [n2] depends quadratically
on the elemental degrees of freedom due to bending, viz., w, Cx and Cy . This
dependence of non-linear stiffness matrices on bending degrees of freedom is due
to the consideration of von Karman non-linear plate theory. If Green–Lagrange
non-linear strain vector is employed then [n1] and [n2] will depend on all the
element degrees of freedom.

The geometric stiffness matrix [KG ] and mass matrix [m] are computed using the
standard procedure [11] as follows:

[KG ]{d}=gv

BT
NLs dx dy dz

where stress vector s= 6sx sy txy txz tyz7 denotes pre-buckling stress state in the
structure and can be obtained by solving

[K0]{d}= {ft}. (12)

Now the pre-buckling stress state {s} can be computed as:

{s}=[Q� ]{[BL ]{d}− {oT}}

with {oT}T = {axDT ayDT axyDT} where ax , ay and axy are the coefficients of
thermal expansion and DT is the temperature difference. In the present study DT
is assumed constant and

[m]=gv

r(z)[c]T[c] dx dy dz

where [c] is the matrix relating displacement anywhere in the element to nodal
variables as:

[c]= &000 0
0
0

0
0
Ni

zNi

0
0

0
zNi

0 '.
It may be noted that in the computation of mass matrix in-plane/axial inertia

is neglected. The element matrices in equation (11) are assembled to obtain the
global finite element equations. While assembling the in-plane/axial nodal
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quantities are kept together so that partitioning is possible. These assembled finite
element equations read;

$Kuu

Kwu

Kuw

Kww%6qu

qw7+$ 0
nwu1

nuw1

nww1%6qu

qw7+$00 0
nww2%6qu

qw7
+l$00 0

KG%6qu

qw7+$00 0
mww%6q̈u

q̈w7=6fu

fw7 (13)

where the subscript u refers to in-plane/axial nodal quantities (ui , vi ) and subscript
w refers to nodal quantities due to bending (wi , Cxi and Cyi ). For the case of
symmetrically laminated, orthotropic and isotropic plates/beams,
[Kuw ]= [Kwu ]=0, due to the vanishing of bending-extension coupling. The
submatrix [nww1] is also found to vanish for these cases. As mentioned earlier
submatrices [nuw1], [nwu1] and [nww1] are linear functions and submatrices [nww2] are
quadratic functions of {qw} only.

4. METHOD OF SOLUTION

To begin with, linear vibration and buckling analyses are performed by
dropping the non-linear stiffness matrices [n1] and [n2] as:

$Kuu

Kwu

Kuw

Kww%6qu

qw7+$00 0
mww%6q̈u

q̈w7=6007 (14)

and

$Kuu

Kwu

Kuw

Kww%6qu

qw7+ l$00 0
KG%6qu

qw7=6007. (15)

Linear buckling analysis is performed to estimate the level of initial stress
compared to critical load. The linear mode corresponding to the fundamental
frequency is assumed as the spatial distribution for equation (13), i.e.,

{qw}= {q̄w}A(t) (16)

where {q̄w} is a normalised eigenvector obtained from linear vibration analysis
such that the maximum transverse displacement due to bending is unity and A(t)
is a time function (represents temporal variable) and will be written as A in the
following. Substituting equation (16) into equation (13), the in-plane/axial
displacement vector can be expressed as:

{qu}=−[kuu ]−1[kuw ]{q̄w}A−[kuu ]−1[nuw1]{q̄w}A2. (17)



.   .610

By substituting equation (17) in equation (13), the equation of motion for
transverse displacements becomes:

[kww − kwuk−1
uu kuw ]{q̄w}A+[n̄ww1 − kwuk−1

uu n̄uw1 − n̄wu1k−1
uu kuw ]{q̄w}A2

+[n̄ww2 − n̄wu1k−1
uu n̄uw1]{q̄w}A3 + l[KG ]{q̄w}A+[mww ]{q̄w}A� = {0}. (18)

The bars over non-linear stiffness submatrices indicate that these are computed
using the normalised mode {q̄w}. Pre-multiplying equation (18) with {q̄w}T and
dividing throughout with q̄T

wmwwq̄w gives an equation of the form

A� + aA+ bA2 + gA3 + gA=0

or

A� +(a+ g)A+ bA2 + gA3 =0. (19)

5. DIRECT INTEGRATION METHOD

In the direct integration method, equation of motion (19) is transformed into
energy balance equation by multiplying it with A� and integrating with respect to
time. The resulting energy balance equation reads,

A� 2 + (a+ g)A2 + 2
3 bA3 + 1

2 gA4 =C. (20)

Using the condition that A� =0 when A=Amax, equation (20) becomes:

A� 2 − (a+ g)(A2
max −A2)− 2

3 b(A3
max −A3)− 1

2 g(A4
max −A4)=0. (21)

Equation (21) for A� =0 will result in at least two real roots. In the absence of
b, these are 2Amax. This indicates that structure executes oscillations with same
amplitude in positive and negative deflection cycle, i.e., 2Amax. However, in the
presence of b, the other real root will not be −Amax indicating that asymmetrically
laminated structures oscillate with different amplitude in positive and negative
deflection cycles. Equation (21) is rearranged to give

T=2g
Amax

0

dA

z(a+ g)(A2
max −A2)+ 2

3 b(A3
max −A3)+ 1

2 g(A4
max −A4)

+2g
Bmax

0

dA

z(a+ g)(B2
max −A2)+ 2

3 b(B3
max −A3)+ 1

2 g(B4
max −A4)

. (22)
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The singularity at A=Amax or A=Bmax in equation (22) is removed by
substituting A=Amax sin u and B=Bmax sin u and appropriately changing the
limits. The modified integral takes the form,

T=
2p

v
=2 g

p/2

0

du

z(a+ g)+ 2
3 bF1Amax + 1

2 gF2A2
max

+ 2 g
p/2

0

du

z(a+ g)+ 2
3 bF1Bmax + 1

2 gF2B2
max

(23)

where

F1 = (1+sin u+sin2 u)/(1+ sin u)

F2 = (1+sin2 u).

The integrals involved in equation (23) can be computed numerically. In the
present study five point Gauss quadrature formulae are employed to compute
these integrals and thus nonlinear frequency.

6. NUMERICAL RESULTS AND DISCUSSIONS

To demonstrate the method proposed in the preceeding section, dynamic
behaviour of thermally stressed composite beams is studied in detail. The
constitutive equation (4) is modified by setting the stress resultants Ny, Nxy and
stress couples My, Mxy to zero. The resulting constitutive relationship becomes:

6Nx

Mx7= $A11

B11

B11

D11%−$A12

B12

A16

B16

B12

D12

B16

D16%G
G

G

F

f

A22 A26 B22 B26 A12 B12

A26 A66 B26 B66 A16 B16 ox0G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l

G
G

G

J

j
6 7×

B22 B26 D22 D26 B12 D12 kx
(24)

B26 B66 D26 D66 B16 D16

or

6Nx

Mx7=$A� 11

B�11

B�11

D� 11%6ox0

kx7
and

Qx = 5
6 A44gxz (25)

where constant 5/6 is the shear correction factor.
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It may be noted that Ny =Nxy =My =Mxy =0 does not imply sy = txy =0 in
individual layers. However, the fact that the above mentioned stress resultants and
stress couples vanish in case of even laminated beams is utilised in avoiding the
pre-buckling stress analysis. The only stress resultant that affects the geometric
stiffness matrix is computed as:

Nx =−s (Q� 11ax +Q� 12ay +Q� 16axy )kDThk (26)

where superscript k denotes the kth layer and hk refers to its thickness.
In the finite element formulation, the interpolation functions employed for

extensional variable u and flexural variables w and Cx are linear and cubic
respectively. Thus the 2 node beam element developed herein has five degrees of
freedom namely u, w, w', Cx and C'x per node.

The element is found to give a fairly accurate estimate of buckling loads and
frequencies even with highly coarse mesh sizes. However, in the present study the
beam is discretised into 32 elements so as to obtain the spatial variation of mode
more accurately. During the coarse of study it was realised that finer meshes result
in better and converged estimate of non-linear stiffness coefficients, i.e., b and g.

The mechanical properties considered in this study are:
(I) Isotropic: n=0·3; aL = aT

(II) Composite: EL /ET =25; GLT =GLZ =0·5ET ; n=0·25; aT /aL =10.
The end conditions considered are:
Both ends Simply-Supported (SS):

At x=0, L; u=w=0

Both ends Clamped (CC):

At x=0, L; u=w=Cx =0

One end Clamped and other end Simply-Supported (CS):

At x=0; u=w=0

At x=L ; u=w=Cx =0.

The results in this section are presented in the form of following
non-dimensional parameters;

lv0 =
mv2

0L4

D� 11
; lv =

v

v0
; Wc =

Amax

z
; lcr =

100aTTcrL2

h2

where v0 is fundamental frequency, v is non-linear frequency, Amax is the maximum
amplitude in a deflection cycle and z=zI/A.

In order to validate the method proposed herein, non-linear frequencies of
simply-supported slender (L/z=100) and short (L/z=25) isotropic beams are
compared with the exact solution due to Woinowski-Krieger [6] and Singh [12] in
Tables 1 and 2. In this study the beam is not subjected to initial stress. The
comparison of non-linear frequencies at various amplitudes indicates that the
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T 1

Comparison of non-linear frequency ratios of simply supported slender and short
isotropic beams

v/v0

ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV
L/z=25 L/z=100

lv0 =91·522 lv0 =97·015
ZXXXXXCXXXXXV ZXXXXXCXXXXXV

Wc Present Ref. [12] Present Ref. [6]

0·2 1·00393 1·00392 1·00376 1·0037
0·4 1·01562 1·01556 1·01494 1·0148
0·6 1·03477 1·03464 1·03327 1·0331
0·8 1·06091 1·06069 1·05831 1·0581
1·0 1·09348 1·09316 1·08956 1·0892
2·0 1·33178 1·33077 1·31907 1·3178

present results are in excellent agreement with those due to Woinowski-Krieger.
The influence of the end conditions on the non-linear frequencies of slender and

short isotropic beams are studied in Figure 1. The results indicate that the influence
of non-linearity is least for beams with clamped ends and maximum for beams with
simply-supported ends. Further, the frequency ratios for short beams are higher
than the corresponding slender beams, implying short beams exhibit higher
non-linearity.

The influence of initial thermal stress on the non-linear frequency of
simply-supported, isotropic and 2-layered angle-ply (45°/−45°) composite beams
of slenderness ratio 25 is presented in Figures 2 and 3. As expected the compressive
stress developed due to thermal loading causes softening and thereby decrease in
the frequency. The frequency of such beams drops to zero when the temperature
difference responsible for compressive stress state reaches its critical value.

T 2

Comparison of non-linear frequency ratios of isotropic slender beam (L/z=100)
with CC and CS end conditions

v/v0

ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV
CS CC

lv0 =235·467 lv0 =492·458
ZXXXXXCXXXXXV ZXXXXXCXXXXXV

Wc Present Ref. [12] Present Ref. [12]

0·2 1·00185 1·0019 1·00091 1·0009
0·4 1·00739 1·0077 1·00364 1·0036
0·6 1·01654 1·0172 1·00816 1·0080
0·8 1·02920 1·0304 1·01446 1·0142
1·0 1·04521 1·0471 1·02249 1·0221
2·0 1·16917 1·1758 1·08679 1·0854
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Figure 1. Variation of frequency ratio (v/v0) with amplitude ratio (Wc ) for slender (L/z=100)
and short (L/z=25) isotropic beams. w——w, SS: L/z=25, lv0 =91·5520; q——q, SS:
L/z=100, lv0 =97·0150; w - - -w, CS: L/z=25, lv0 =206·373; q - - -q, CS: L/z=100,
lv0 =235·467; w–·–w, CC: L/z=25, lv0 =397·053; q–·–q, L/z=100, lv0 =492·458.

Further, the beams subjected to large temperature loads (beyond critical
temperature) can oscillate with a finite amplitude. In other words, the beams
subjected to subcritical temperatures can oscillate with infinitesimal amplitude and
finite frequency (which is lower than the natural frequency of the beam) and the

Figure 2. Influence of initial thermal stress on the variation of frequency ratio (v/v0) with
amplitude ratio (Wc ) for simply-supported short (L/z=25) isotropic beams. q, F=0; w,
F=0·5*lcr ; r, F=1·0*lcr ; t, F=1·2*lcr ; lv0 =91·522; lcr =54·869.
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Figure 3. Influence of initial thermal stress on the variation of frequency ratio (v/v0) with
amplitude ratio (Wc ) for simply-supported two layered angle-ply short (L/z=25) beams. Symbols
as in Figure 2. lv0 =88·225; lcr =16·153.

ones subjected to temperatures higher than their critical value can oscillate only
with a finite amplitude.

Figures 4 and 5 show the effect of temperature loading on the variation of
frequency ratio with amplitude ratio for clamped–clamped, isotropic and 2-layered

Figure 4. Influence of initial thermal stress on the variation of frequency ratio (v/v0) with
amplitude ratio (Wc ) for clamped–clamped short (L/z=25) isotropic beams. Symbols as in Figure
2. lv0 =397·053; lcr =192·378.
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Figure 5. Influence of initial thermal stress on the variation of frequency ratio (v/v0) with
amplitude ratio (Wc ) for clamped–clamped two layered cross-ply short (L/z=25) beams. Symbols
as in Figure 2. lv0 =79·363; lcr =60·210.

cross-ply (0°/90°) composite short (L/z=25) beams. It is interesting to note that
the frequency of such beams does not become zero even when temperature has
reached its critical value. It is mainly because the buckling and vibration mode

Figure 6. Influence of initial thermal stress on the variation of frequency ratio (v/v0) with
amplitude ratio (Wc ) for simply-supported two layered cross-ply short (L/z=25) beams. Symbols
as in Figure 2. lv0 =47·466; lcr =40·657.



    617

shapes of clamped beams are different unlike those of simply-supported beams.
Thus, dissimilar vibration and buckling mode shapes tend to stabilise the structure.

In all the cases investigated so far, i.e., Figures 1–5, the non-linear stiffness
coefficient b is zero. It is so even for 2-layered cross-ply beams with clamped ends,
bending-extension coupling is non-zero. It is because the stress couples caused by
asymmetry of lay-up react to clamped end conditions. Therefore, the amplitude
of positive and negative deflection half cycles throughout these studies is same.
However, the non-linear stiffness coefficient b is non-zero for 2-layered cross-ply
simply-supported beams. The influence of initial thermal stress on the oscillatory
behaviour of such beams is investigated in Figure 6. This study indicates that
asymmetrically laminated beams with simply-supported ends oscillate with
different amplitude in positive and negative deflection half cycles. It is also noticed
that frequency decreases initially and then increases with an increase in amplitude.

7. CONCLUSIONS

A simple method is proposed to study the vibratory behaviour of
unsymmetrically laminated structures subjected to large thermal loads. The
comparison of the results indicates that the proposed method is shown to yield
accurate prediction of non-linear frequencies in the absence of initial stress. It is
shown that unsymmetrical laminates oscillate with different amplitudes in positive
and negative cycles. It is also shown that buckled beams oscillate with a finite
amplitude. The boundary conditions have significant influence on the vibratory
behaviour of beams. It is more so, when the buckling mode and vibration modes
are dissimilar. The fixed-fixed end conditions, where vibration and buckling modes
are dissimilar, are found to have a stabilising effect, viz., fundamental frequency
remains finite even when initial stress corresponds to the buckling load.
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